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ABSTRACT

In this paper we consider the time to first failure of a parallel system

in which the failure and repair rates of components depend on the state of

the other components as well. A back-up unit with a random life time is

employed whenever all the components of the system are down. The system

fails when all the components of the system and the back-up unit are down.

The first moment, the Laplace transform and the probability distribution of

the time to first failure of this system are obtained. Sufficient conditions

under which this distribution has the new better than used (NBU) and an

exponential limit property are given. Special cases with phase type and "L

deterministic back-up unit lifetimes are also considered. These results

extend the results of Ross and Schechtman (1979).

Key words: Dependent parallel system, first failure time, back-up

unit, safety periods, new better than used (NBU) distributions, exponential

limit theorem, phase type distributions.
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INTRODUCTION

In many parallel reliability systems with maintained components, a

system failure may not occur immediately upon the failure of all of its

components; rather a system failure may occur only after all of its com-

ponents have been down continuously for a fixed or random time period.

This time period is called the safety period. This safety period may be the

lifetime of a back-up unit. For example consider a system serviced by two

AC power sources. When both these power sources fail, a DC power source

(battery) with a fixed or random lifetime is used to supply power to the

system: the battery here serves as a cold-stand-by unit, providing a

safety period for the AC power sources to be repaired. On the other

hand, the safety period may itself represent the time required to cause

actual damage to the system when all of its components are down. For

example consider a vessel accommodating a constant heat source cooled by a

system of two redundant blowers (Dunbar (1984)). in such a system it is

usual to consider a system failure as structural damage of the vessel due to

excessive temperature. Suppose the normal temperature of operation be

much lower than the maximum that the vessel has been designed to with-

stand. In this case failure of both blowers is not sufficient to cause im-

mediate failure of the system. The system will fail with a delay in time

depending on the magnitude of the heat input, system heat capacity and the

difference between the operating temperature and the temperature required

to cause damage to the vessel. Furthermore, the system will fail only if

neither of the blowers is repaired (or replaced) before damage occurs.

Similar examples in the nuclear and perishable food industries are discussed

in Ross and Schechtman (1979).
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In this paper we consider such a parallel system in which the failure

and repair rates of components depend on the state of the other components as

well. A back-up unit with a random lifetime is employed whenever all the

components of the system are down. The system fails when all the components

of the system and the back-up unit are down. A detailed description of this

model is given in Section 1. The first moment, the Laplace transform and the

probability distribution of the time to first failure of this system are obtained

in the same section. Section 1 also contains sufficient conditions under which

the first failure time has the new better than used and an exponential limit

property. Special cases with phase type and deterministic safety periods are

considered in Sections 2 and 3 respectively. Z

1. DEPENDENT PARALLEL SYSTEMS WITH SAFETY PERIODS: THE MODEL

Consider a parallel system consisting of n components. Each component

alternate between intervals in which they are up (i.e. working) and in which

they are down (i.e. failed). Let Zi(t) be the state of component i at time

t:i.e Z.(t) = 0 if component i is up at time t and Z.(t) = 1 otherwise. Thus
i• •

Z(t) = (Zl(t), Z2(t) .. ,Zn(t)) describes the perfurmance of the components

at time t. It is assumed that the vector performance process Z -{Z(t), t&R+}

is Markov on the state space S = {0, 1 ,n
, and if {Zi, i .P+} is the embedded

process of Z embedded at its transition epochs, IIZi - ZiI 11 = 1, a.s., where

n
for a, b f S, Ila-bll = (ai - bi) 2 . That is at any transition epoch of Z

i=1

either one repair or one failure of a component takes place. We call such a

orocess multivariate binary birth and death process. Note that if all n

components are separately maintained and the failure (respectively repair)

I _ -j
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rate of component i is Ai (respectively Ii), the vector performance process

Z of such a system satisfies the above condition (e.g. Chiang and Niu

(1980), Ross and Schechtman (1979)).

Our system is, however, dependent in the sense that the failure and

repair rates of component i can be dependent on the state of the other

components. Suppose the vector performance process Z is in state a (re-

spectively b) such that ai = 0 (respecti vely bi = 1). The failure (re-

spectively repair) rate Xi(a) (respectively pi(b)) of component i may depend

on a (respectively b)(e.g. Ross (1984), Schechner (1984)). Such a generali-

sation is needed when the working components share the overall workload or

when the repair facility has limited capacity. Let Q be the infinitesimal

generator of Z. Two examples with n = 3 for (i) independently maintained

and (ii) dependent system with equal load sharing of a constant load and

proportional failure rate are shown in Figures 1 and 2.

When Z is in state 0 (0,0,0,...,0) (i.e. all n components are working)

we say that the system is in perfect condition. The system is said to be

down whenever Z takes the value 1 (1,1,...,1) (i.e all n components are

failed) and it is said to be up otherwise (i.e. at least one component is

working). Whenever the system reaches the down state an emergency

back-up unit is brought in which provides a random safety period. If none

of the n failed components are repaired during this safety period, the

system fails at the end of this period. Otherwise at the time of the first

repair after the system became down, the emergency back-up unit is removed

and the system is placed in normal operation.

Let 0<R 1 <R2 <... (respectively 0<$I<S2<...) be the consecutive time

epochs at which the process Z enters (respectively exits) state 1 starting

from some initial state Z(0) I 1. Then one sees that O<R <S <R2 <S2< .... ,a.s.

1 2 2
I . * . .
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Let X0 =R 1 ,Xi  = Ri~l-Si and Y = Si Ri, i = 1,2,... Note thar Yi is the

time required for the first repair after the i-th entrance of the process Z

into the state 1. Thus (Y )O is a sequence of independent and identicallyi=1
distributed (i.i.d) exponential random variables. It can be easily verified

that (X )i0 is a sequence of mutually independent phase type random variables

(e.g. Neuts (1981)) with (Xi)= having identical distributions. Now let (Ti) 1

be the sequence of the length of the safety periods. That is, at the entrance

of Z into state 1 for its i-th time, the emergency back-up unit will provide a

safety period of length Ti . Then the time to first system failure VT

is given by:

VT = inf {R. + Ti: Ri + Ti < Si, i=1,2 ...... (1)

In the remainder of this paper we will assume that (Ti) 1 is a sequence of

independently distributed random variables that are independent of Z. Note

that V is nondecreasing in R. and T.. Then from (1) one easily sees
T

Lemma 1: For X' st Xi 0,1, 2,..., Y-1  Y' and

stT.' < T!' i = 1,2,..., one has
st

VT, S< T ,, ,."
V VT

where for any two random variables W' and W", Wst

St(respectively st) W"<=>P{W' > t} (respectively =)

P{W" > t} for all t.

It is of interest to obtain the mean and the probability distribution of VT. In

.J .. >..
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Section 1.1 we will first obtain these results with no specific assumptions regarding

the probability distributions of (X )i=0, (Yi)i;1 and (Ti)i

1.1 General Results for Single Component Systems.
00 0o 0o

Consider a single component system where (X )i=11 (Y )j= and (Ti)i=I

are the up, down and safety periods respectively. Then the time to the first

system falure VT as defined in (1) can be rewritten as:

i-i

VT = inf { 2 (X. + Y.) + T.: T. < Yi' i=1,2,...} , (2)
j=0 I

where Y 0 w.p.1. Let F0 , F, G and H be the probability distribution

functions of the mutually independent random variables X0 , (X i)i 1 , (Y i)i=l

and (Ti).= respectively. Define K+I to be the smallest integer for which

T. < Y. is satisfied. That isI I

K + 1 = mai {i" T. < Y., i = 1,2,...}. (3)

Since (T and (Y ) are mutually independent sequences of i.i.d
i =~1 i i=~1

random variables, K has a geometric distribution on {0,1,2 .... I

with paramete P{T. < Y}. So

P{K = i} = p(1-p)', i 0,1,2,.

and

E{K} = (1 - p)/p

N



8

where

p P{T < Y¥} = f (1 - G(x))dH(x),

0

and E is the expectation operator. Now combining (2) and (3) one

obtains

K
VT X 0 + I (X + .Y + T. (4)

j=b K+1

b
with the usual convention that I x. = 0 for b < a and where

a

st st
,= Y. and T*- T
j JlY. T. n jlT j < Yj j 1,2 ....

Note that for j < K, Y = Y. and TK+ = +1 . The probability dis-

tribution functions G* and H* of (*)j°= and ( j'j0l respectively are

given by

x
G*(x) = 1- .f (1 - H(y))dG(y) , x >O0:

and 1

H f (1 - G(y))dH(y), x > 0.

p 0

Taking the expectations on both sides of (4) one obtains A

E{VT} = E{X0} + 11 {E{X} + E{Y*}} + E{T*} (5)
p! , , P "''",.
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where E{X} E{Xi}, i= 1,2,...,

E{Y*} = EI = T .f y(l - H(y))dG(y),p 0

and

E{T*} = E{T} = f y (1 - G(y))dH(y), i=1,2, ....
P 0

Furthermore, taking the Laplace transform one has

LIVT} = } L , (6)
I-(1-p)L{X}L{Y*}

where for any nonnegative random variable W, LW} = Efexp(-sW)I, Re(s) > 0.

Hence

P{VT 5 x} = F0 ® ( p I (i-p)JF (j)  G*(j)) H*(x), x > 0, (7)
j=0

where F( 0)(x) = 1, x > 0, FO ) is the j (Q1) fold convolution of F with itself

and 0 stands for convolution. G*( j ) is similarly defined. Equation (6) is a

generalisation of Equation (2) of Ross and Schechtman (1979). When F0, F,

G and H are all absolutely continuous with support (0, o) one may use either

the Laguerre transform (Keilson and Nunn (1979), and Sumita (1981)) or

the generalised phase type (Shanthikumar (1985)) method to compute

P{VT _< x) given in (7). However, it seems appropriate that we also develop

approximations and bounds for V that are easily computable. With this in

T

• " .° • ° %" %" • ', " . . ... . . . . . . . .... • *% *"• ° • • . . . . . . **. . . . . . .. .. ..- . . . ." ' ' ., ," " . " - , .- ,° . . . - . . • . o -.- - . . - . . . . . .-.. .... .. ' -. -
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mind we will first provide sufficient conditions under which VT has the new

better than used (NBU) property. A nonnegative random variable W is

st
NBU iff P{W > t + s} 5 P{W > t} P[W > s} or equivalently W k W>-t t > 0.

Theorem 2: Assume that X and (Ti) 1OD are NBU, (Y i0 are exponentially0=1i=1aeexoetal

st

distributed and X0 = Xilx. >U-u, u > 0, i = 1,2. ..... Then VT is NBU.

Proof: In order to establish that VT is NBU we need to show that

st
VT k VTIV >t -t, t > 0. (8)

T

Suppose VT > t. Then there are three cases one can consider. They are:

Case I: 0 < t < R1 .

In this case, from (4) one sees that

* K
VTICase I t= X0 x -t + (X. + Y) +T* (9)0 j=1 J K+1

st

SinceX >t-t X0 , comparing (4) and (9) one sees that (8) is
0

satisfied in this case.

Case 11: R < t < S£, VT> t and T > t-R£ for some £( 1).

Let u - t-R£ and define

st U

T= T k >u-U, T.'= T+ j 2,3.1 IT u j jl , ,. . ,

• "" " " . ' . '. ."--'"'-"- "':.

Si - , ,. ", ° . - -. - - - . - .• - - ° - - . . •
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st

YI =
Y1 = £1Y,,>U" Y" = Y j-I = 2,3.. ,

and X' = X j = 1,2,. , and set = = 0.

Then

i-1
VT t inf [ (X'+ Y') + T.': T.'< Y.', (10)TiCase i j=0 J I '

i = 1,2,...}

stT00 y0
Since (T )j= is NBU and ( is exponential one sees that T"< T. and

st st
Y" = Y., j = 1,2,.... Furthermore, X' = X, j = 0,1 .... Then comparing (2)

and (10), from Lemma 1 one sees that (8) is satisfied in this case too.

Case IIl: S < t < R+ 1 , VT > t for some (k 41).

Let u = t-S£ and define

st
XU= XX, > ' = X+ j, j = 1,2 ....

Y.' Y+_, T'= Tg+ j = 1,2,..., and Y6 0.j +j-l' j £ j-l'"'" -

Then

st i-1
VTiC ii-t = inf{ . (X' + Y-') + T.' T.' < Y.' (11)

j=0 I I I

i = 1,2 ....

st st st
Since X £X u one sees that X. Xt, j = 0,1,2,..., Y. Y. and

0 eIx.>Uujst X,
T' = T., j = 1,2,.... Then from Lemma 1 and Equations (2) and (11) one

sees that (8) is satisfied in this case as well.

lop
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Now a routine unconditioning with respect to these three cases (e.g. Shanthikumar

(1984)) completes the proof.

The above theorem appears to be weaker than Proposition 1 of Ross and

Schechtman (1979). As we will see later in Section 1.2, application of

Theorem 2 to the dependent parallel system results in a theorem that is stronger

than Proposition 2 of Ross and Schechtman (1979). When T. is degenerate

(say equal to a constant A), one can use the proof of Proposition 1 of Ross

and Schechtman (1979) and the above proof to establish

Theorem 3: When X is NBU, T i = A is a constant and for all u > 0,i0
st

X > X >u -u, i = 1,2,..., VT is NBU.

.

Note that Theorem 3 is a slight generalisation of Proposition 1 of Ross and

Schechtman (1979). Theorems 2 and 3 can be used to bound higher moments

of VT (e.g. Proposition 3 and Corollary 1 of Ross and Schechtman (1979)).

Next we will provide an exponential limit theorem that can be used to approximate

the distribution of V Consider the sum

Ky
U I (X + Y)i=1 i

where K is a geometric random variable with parameter p and support

10,1,2, .... I

IC
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P = f (1 - G(yx))dH(x)
0

and

Y YiY.<yT i = 1,2 ......[, i i

for some y > 0. Then

E{U } E{Xi} + E{YilY i < y Ti}

Suppose P{T. > 0} = 1 and Y. has support ( 0, o) and is absolutely

continuous. Then as y - c one has p - 0, E{U I co and L{Y i} - L{Yi}.

Hence, using an analysis similar to that of Shanthikumar and Sumita (1983).

Theorem 1.A4, one obtains

-t qP{U < t E{Uy}} 1 - e , t > 0 as y 4

ly Y
Therefore

Theorem 4: When G is absolutely continuous with support (0, o), H(0) = 0

and 0 < p = P{Y > T.} < e, there exists an M(c) such that M(s) - 0

as - 0 and

IP{VT ! x} - F 0  B @ H* (x)l < M(c) , x > 0
T 0

where

B(x) = 1 - exp { px , x > 0.
(1-p)(E{X} + E{Y*}) "

In the spirit of the above theorem one may therefore approximate P{VT = x)

.-• 5
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for small values of p by

P{VT < x} F0 @ B (® H* (x), x > 0

Two simpler approximations of the above form (for small values of p) are:

P{VT < x} B0 ® H* (x), x > 0, (12)

and

P{VT x} = 1 - exp { x/E{VTfl, x > 0, (13)

where E{VT} is as given in (5) and

B0 (x) = 1 - exp {x/(E{X0 } + (I"P){E{X} + E{Y*}})}, x > 0.
0 p

1.2 Results for Dependent Parallel Systems

In the remainder of this paper we will assume that the sequences (X

and (Y.)O are as defined for the dependent parallel system governed by
Ii=1

the vector performance process Z with infinitesimal generator Q. We will
first give the means and the probability distributions of X 0  i . Partition

the Q matrix such that

S ' Q0 " 011

Q) -M

where Q0 is the infintesimal generator of the lossy process of Z defined over

the state space S' - S - 1 (Keilson (1979)), IJ(1) is the vector of rates at kb

which the process Z leaves the state 1. The rate from state 1 to

(1,1,...,1,0,1,...,1) when the 0 is in the i-th position is pi(l), i - 1,2,...,n.

All other rates are zero. So

N %
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n
i=1

For the example corresponding to Figure 2, p(1) = (0,0,0,0,p3,12,pl),

M = ( 1 + 2+ p3) and Q = (0,0,0,0,X,X,X)'. Then (e.g. Keilson (1979),

Neuts (1981), Shanthikumar (1985)),

E{X 0} =a 0
11', E{X} b Q 1'

-~ ~ c r-Ax(Am
P e (Ax

O (x) -A m Ix

F0(x) = e - (Ax)m x > 0

m0 m! -",'

where a is the initial probability distribution of Z(0) and b is the probability

*distribution of Z immediately after its exit from state 1. That is

* b(,1,..,,0,1. .,1) P.(1)/M, i=1,2,...,n and all other probabilities are

o -

zero: i.e. b p (1)/M. Similarly if the system starts from perfection

PFK(0) 01 = (O,),...,0) 1. Furthermore,

A mmax m-Qo0 i)

p =+ ± Q

and I is an identity matrix of appropriate dimension. Also one can easily see

that

[b_(1,1,.... ................ .....................2.......................tie ar ''

zer : ie. __ IJ1)/ . Smilrly if he ystm sart fr m p rfetio ,.'
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E{Y.} = 1/M

and

G(x) 1 - exp(-Mx), x > 0

We will next provide sufficient conditions under which Theorem 2 can be

applied to this case of multivariate binary birth and death process Z defined

on the state space S = {0, 1n For each state x & S define

W(x) = Ii: X i = 0, i = 1,2,...,n} and W(x) = {1,2,...,n}-W(x). That is W(x) is

the set of working components in state x. Then Shaked and Shanthikumar (1985)

has shown that if

Z(0) =0 and for all x, y c S such that

(C1) W(x) C w(y_), Xi(x) <5 Xi(y), i w(x)

and pi(x) > pi(y), i sW(y),

st

then X is NBU and X Xil-> uU , u > 0, i = 1,2,.... Then from

Theorem 2 one has

Corollary 5: Assume that Z satisfies Condition (Cl). Then VT is NBU,

whenever T. is NBU.

Note that when the components are independent (Cl) is automatically

satisfied. Since a degenerate random variable is NBU, one can easily see

that Corollary 5 is a generalisation of Proposition 2 of Ross and Schechtman

(1979). In fact the above result holds true for more general systems, more

general than those considered in Chiang and Niu (1980). Such a generalisation

is discussed in Shaked and Shanthikumar (1985).

5;
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2. DEPENDENT PARALLEL SYSTEMS WITH PHASE TYPE SAFETY PERIODS

In this section we assume that (T.)j= 1 has a phase type distribution

with representation (c, C) and m phases (e.g. Neuts (1981)). That is T. has

the same distribution as the time to exit from a lossy process (say)

N = {N(t), t & R+} with state space {1,2,...,m}, infinitesimal generator C

and initial probability vector c. Then

E[T} = c C 1 1

and

A(x) = c 01 (I + C)1 eQ (x)'

i=O i!

where

q max {-C(i,i)}

The evolution of the parallel system with a back-up unit that has a

phase type lifetime can be described as follows: the process Z evolves as

before starting from some initial state Z(0) different from 1. Every time

Z enters state 1 an auxiliary process N is initiated into state i with probability

c i , i = 1,2,...,m. The process N is lossy and is governed by the

infinitesimal generator C. If the auxiliary process N leaves the set of states

{1,2,...,m) before Z exits state 1, the system fails. Otherwise, the auxiliary

process is terminated as soon as Z exits state 1. Let Z = {Z(t), t & R+} be

this combined process. The state space of Z is then S'U{(1,1),(1,2), ... ,(1,m)}.

Noe that a state (1,i) means that Z is in state 1, and N is in state i, i = 1,2,...,m.

The infinitesimal generator Q of this process Z is given by
-- q

J . .* -. ..

4 . 4. ____ ___
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s' lx{1,2,. ,m}

lx{1,2,...m) j'.-PQ -MI + C

An example with Q as given in Figure 2 and rnm 2 is given in Figure 3.

Note that Z is a lossy process and the exit time is V T . Therefore

E{V T I = (a, 0) (-1 ,(15)

and

P{V > x) (a, 0) (1 + Q -i , (16)

*= I I

x > 0,

where

=max {Qii}

Since the class of phase type distributions is weakly dense, one may use the '

above results to approximate the distribution of VT when the safety period

do not have a phase type distribution. We will next consider a very special

case of this: the safety period is a fixed constant.

3. SYSTEM FAILURE TIME WITH FIXED SAFETY PERIOD

In this section we wl assume that the lifetime of the back-up unit is a

fixed constant A. That is T A w.p.1, j 1,2,.... Then from (5) and
(o

a1 nd obtin

1
* *., o , , . . .ma ... .....i....
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EIV A)=(a + eMA b b) Q-1 1' + eMA f Mxe'Mxdx + A

The probability distribution P{VA _ x} can be obtained from (7) with

appropriate substitution. Specifically,

P{VA x 1 O, x A

and

P{VA < x} = {eMA Y (1-e-MA)j MA M 0 G*( j )} ®)F0 (x-A), x > A,j=0

where F and F0 are given by (14) and

G*(x) = (1-e MX)/(1-eM), 0 < x - A.

In the spirit of Theorem 4 and Equation (12) one may also use the following

-MA.exponential approximations for P{VA ! x} when e is very small.

P{VA - x} F0 ( )B(x-A), x > A (17)

and

P{VA !5 x} j 1-exp{-(x-A)/(E{VA}-A)], x = A,

where

B(x) = 1-exp{-xe MA/{(E{X} + E {Y*}) (1-e-MA)}}, (18)

and

A

E{Y*} = (1-e-MA) 1 f M x e-Mxdx.

0

In (17) we approximate the time to first failure distribution by the

" " '' 4 * .%.. .*- - " *. S ,,(~ .. . . .. .,, ...... . . . .,oo .. . . . . ,,... .; .
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convolution of a phase type distribution F0 given by (14) and an exponential

distribution given by (18). Next we will look at an alternative approximation

for P{VA - x}
AA

It is well known that a degenerate distribution can be arbitrarily closely ,

approximated by an Erlang-m distribution with sufficiently large m. Let

jT l be an i.i.d. sequence of safety periods with Erlang-m distribution:

equivalently phase type distribution with representation (c, C ) where

c = (1,0,0,. ..,0), C (i,i+l) = m/A = -C (i,i), i = 1,2,...,m-1;-m """' m m_-

C (m,m) = - m/A for m = 1,2,.... Note that E{'r} = A for all m = 1,2,....m
and Var {I'r} = A2 /m, m : 1,2 ..... Now let VTm be the system lifetime VT

00 0

obtained from (4) with (T-) 1 replaced by (TmP)j=. Now combining the above
j=1'

observations with the results in Section 2 (Equation (15) and (16)) one obtains

E{VTm} = (a, 0) Q 1

and
cc ×Pr (X X)i

P{VTm < x } (a, 0 _ (I + 1Q) i 11, x > 0,

where

QM [
1'. Ij1) -MI + Cm]

and Pm max {-Qm(ii)}. Thus, for large m one has

A m E{VA }  E{V-rm} I..

and

PIVA < x} I P{VTm 5 x}.

;;....:,.,, - .-... . -..-...- .- ... . - .--. . . , . . . . .

6.. . h A-
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